找文章 / 找答案
精选问答 更多内容

[数据处理] 数据预处理包含哪些?

叮叮叮叮当白银一 显示全部楼层 发表于 2023-5-15 15:23:46 |阅读模式 打印 上一主题 下一主题
1
未解决

回复

使用道具 举报

精彩评论1

yhdata_ruby铂金一 显示全部楼层 发表于 2023-5-15 15:28:53
常见的数据预处理步骤有:

1. 数据清洗:处理缺失值、异常值和重复值。可以通过填充缺失值、删除异常值和去除重复记录来清洗数据。

2. 特征选择:选择对目标变量有重要影响的特征。可以通过相关性分析、特征重要性评估或使用领域知识进行选择。

3. 特征缩放:对特征进行缩放,使其具有相似的数值范围。常见的方法包括标准化(将数据转换为均值为0、方差为1的分布)和归一化(将数据缩放到0和1之间)。

4. 特征转换:对特征进行转换,使其符合模型的假设或要求。例如,对非线性关系进行多项式扩展、对分类变量进行独热编码或使用主成分分析(PCA)进行降维等。

5. 数据集划分:将数据集划分为训练集、验证集和测试集。训练集用于模型训练,验证集用于模型选择和调优,测试集用于评估模型的性能。

6. 数据平衡:处理不均衡数据集的问题,例如通过欠采样、过采样或生成合成样本等方法来平衡正负样本比例。

7. 数据转换:将数据转换为适合机器学习算法输入的格式,例如将文本数据转换为数值特征向量。

8. 异常处理:处理异常数据或噪声,可以通过平滑技术、离群值检测或过滤等方法来减少异常的影响。
回复

使用道具 举报

高级模式
您需要登录后才可以回帖 登录 | 免费注册

  • 官方微信

    欢迎关注永洪服务号!收费为0,价值无限

    扫码关注
  • 新浪微博

    让每位用户轻松挖掘数据价值!

    访问新浪微博
  • 智能客服
50W

会员等你来哦

Copyright   ©2012-2024  北京永洪商智科技有限公司  (京ICP备12050607) 京公网安备110110802011451号 |《永洪社区协议》
返回顶部