永洪社区

标题: 数据治理十大难题:深度解析与实用解答! [打印本页]

作者: 喝酸奶不舔盖    时间: 2024-3-6 19:33
标题: 数据治理十大难题:深度解析与实用解答!
本文列出了我碰到过的关于数据治理最为棘手的十大问题,并且给出了回答:

1、我是一个IT人员,发现系统中有很多同名不同义的指标,了解到这是由于不同部门的人员定义造成的,请问该如何解决这类问题?
面对系统中存在的同名不同义指标问题,作为IT人员,可以通过以下步骤来解决这个问题:
(1)指标审计
(2)跨部门沟通
(3)建立指标标准化工作组
(4)统一指标定义
(5)实施数据治理政策
(6)培训和宣传
(7)监督和持续改进
(8)技术支持
通过这些步骤,可以有效地解决同名不同义的指标问题,提高数据的一致性和准确性,支持组织的数据驱动决策。
2、我是一名数据治理人员,经常发现遵守数据标准和保证业务连续性会发生冲突时,请问怎么办?
作为一名数据治理人员,面对遵守数据标准和业务连续性之间的冲突,需要采取平衡的方法来解决问题。以下是一些解决策略:
(1)理解冲突根源
(2)沟通与协调
(3)寻求灵活性
(4)制定风险管理计划
(5)创新解决方案
(6)建立长期策略
(7)监控与反馈
通过上述方法,可以在确保数据治理标准的同时,支持业务连续性,最终实现业务需求和数据治理之间的平衡。这需要数据治理人员具有灵活性、创新思维和良好的沟通协调能力。
3、我是一名数据治理人员,有人跟我抱怨当前公司的数据共享开放太长,严重影响了业务响应及时性,请问怎么解决?
作为数据治理人员,面对公司数据共享开放流程过长、影响业务响应及时性的问题,可以采取以下步骤来解决:
(1)问题识别与分析
(2)沟通与讨论
(3)流程再设计
(4)数据访问策略优化
(5)建立数据目录
(6)培训与支持
(7)持续监控与改进
(8)高层支持
通过上述措施,可以有效地解决数据共享开放流程过长的问题,提高业务的响应速度和数据利用效率,进而支持业务的灵活性和竞争力。
4、我是一名数据治理人员,很多一线业务人员跟我抱怨,说当前公司对一些敏感数据开放的管控非常严,导致一线无法基于这些数据进行精细化分析(不需要看到清单,但需要能基于这些清单数据进行灵活的统计分析),进而影响了业务发展,请问我该怎么办?
面对一线业务人员对于敏感数据开放管控过严、影响业务发展的抱怨,作为数据治理人员,可以通过以下方法来平衡数据安全与业务需求:
(1)识别和分类敏感数据
(2)沟通和了解需求
(3)探索数据脱敏和匿名化方案
(4)实施精细化的数据访问控制
(5)建立数据共享平台
(6)制定严格的数据使用政策和流程
(7)培训和教育
(8)持续反馈和改进
通过上述措施,可以在确保敏感数据安全的同时,满足业务部门的分析需求,支持业务发展。这需要数据治理人员与业务人员之间的密切合作,以及对数据保护技术的深入了解。
5、我是一名数据治理团队的负责人,发现公司领导忙于业务发展,难有精力关注数据治理工作,同时数据治理对于业务发展的作用比较间接,很难获得展示价值的机会,请问我该如何破局?
面对公司领导对数据治理工作关注不足的挑战,作为数据治理团队的负责人,可以采取以下实际和可操作的策略来提升数据治理的可见性和认可度:
(1)识别并关联业务痛点
(2)量化数据治理的业务价值
(3)实施快速胜利策略
(4)建立数据治理沟通渠道
(5)寻找内部倡导者
(6)强化数据治理团队的业务理解
(7)使用技术工具提升效率
通过上述策略,可以有效地提升数据治理在组织中的地位和可见度,使领导层和业务部门认识到数据治理对业务发展的重要作用,从而获得更多的关注和资源支持。这些策略的关键在于将数据治理与业务目标紧密关联,展现其直接的业务价值。
6、我是一名数据治理团队的负责人,公司已经成立了数据治理委员会,并且定期召集相关部门开联席会议,同时也能下发通报治理进展,但我发现各部门的配合力度有限,原因很多,比如各部门的数据管理人员有限,费用有限,认识不足,能力不够,同时数据治理工作跟各部门的本职工作有时间和精力上的冲突,我的数据治理团队又刚刚建立,对于其他部门的指导培训能力也有限,因此深感压力,请问我该怎么做?
面对这样的挑战,作为数据治理团队的负责人,可以采取以下策略来提升各部门的配合力度,并有效推进数据治理工作:
(1)优先级和阶段性目标
(2)资源和支持
(3)培训和能力建设
(4)沟通和协作机制
(5)实用主义和灵活性
(6)明确责任和激励
(7)展示数据治理价值
(8)外部资源和专家咨询
(9)建立反馈机制
(10)培养数据治理文化
(11)建立和维护信任
通过这些策略,可以在资源和能力有限的情况下,逐步提升数据治理工作的效果和各部门的参与度,最终实现数据治理工作的长期成功。
7、数据有哪些岗位,在职业发展前途上,数据治理相对于其它数据岗位有没有优势,为什么?
数据领域内的岗位非常多样化,涵盖了从技术到管理,从分析到策略的各个方面。下面列举了一些主要的数据相关岗位,以及数据治理相对于这些岗位的潜在优势:
数据相关岗位:
(1)数据分析师:负责分析数据,以提供业务洞察和决策支持。
(2)数据科学家:利用统计学、机器学习等方法从数据中提取知识和洞察力,通常要求较强的编程和数学技能。
(3)数据工程师:专注于构建和维护支持数据分析和数据科学的架构和数据流程。
(4)数据架构师:设计数据管理系统的架构,确保数据的准确性和可访问性。
(5)数据库管理员(DBA):负责数据库的日常运维、性能调优和数据备份恢复等工作。
(6)商业智能(BI)专家:利用数据分析和可视化工具,帮助企业理解业务数据,从而改善决策和业务流程。
(7)数据产品经理:负责数据产品的规划、开发和管理,桥接技术团队和业务需求。
(8)数据治理专家:负责制定和执行数据治理框架、政策和标准,确保数据的质量、安全和合规。
数据治理相对于这些岗位的优势:
数据治理在职业发展上被认为更有前途的原因在于其在现代企业中的核心作用和日益增长的需求。随着数据量的爆炸性增长和数据驱动决策的重要性日益凸显,组织越来越意识到高质量的数据治理对于确保数据质量、满足合规要求、提高业务效率以及实现数据安全和隐私保护的重要性。
(1)战略性:数据治理专家在组织中扮演着确保数据质量、合规性和有效利用的关键角色。与其他更偏向执行层面的数据岗位相比,数据治理更加关注组织的数据战略和长期目标。
(2)影响力:数据治理工作影响组织的整体数据策略,涉及到跨部门的合作与协调,其工作成效直接关系到组织的决策质量和运营效率,因此在组织中的影响力较大。
(3)跨领域技能:数据治理不仅需要技术知识,还涉及法律、合规、业务流程等多个领域。这种跨领域的知识使得数据治理专家在职业发展上具有更广泛的视野和更多的机会。
(4)稳定性和需求:随着数据隐私和合规要求的日益增加,数据治理变得越来越重要。企业对数据治理的需求长期而稳定,这为数据治理专家提供了良好的职业发展前景。
(5)数据价值最大化:数据治理有助于优化数据管理流程,提高数据质量,从而使数据的价值最大化。在数据驱动决策日益普及的背景下,这一点对于企业竞争力至关重要。
(6)合规与风险管理:随着数据保护法规(如GDPR和CCPA)的实施,组织对于遵守法律的需求越来越高。数据治理专业人员在帮助组织管理数据合规性和降低数据相关风险方面发挥着关键作用。
综上所述,虽然数据治理只是数据领域中的一个岗位,但其在战略性、影响力、跨领域技能以及稳定性和需求方面相对于其他数据岗位具有一定的优势。然而,职业发展的前途也取决于个人的兴趣、技能和职业规划,因此选择适合自己的职业路径是最重要的。
8、我是一名数据运维人员,我每天也在跟数据打交道,进行数据稽核和解决数据质量问题,但感觉这些工作还是比较枯燥,我不知道别人口中的有前途的数据治理工作和我当前做的工作有什么联系和区别,如果有区别,那么这些区别是什么,我应该如何做,才能转型去做数据治理?
你目前的工作,即数据运维、数据稽核和解决数据质量问题,实际上是数据治理的重要组成部分,特别是在保障数据质量和数据准确性方面。数据治理工作不仅包括这些,还涉及到更广泛的内容,包括但不限于数据政策和标准的制定、数据的分类和元数据管理、数据安全与隐私保护、以及跨部门的数据共享与协作等。简而言之,数据治理着眼于组织内外的数据管理和优化,旨在提高数据的价值、减少数据相关的风险,并支持业务目标的实现。
要从数据运维转型到数据治理,你可以从以下几个方面入手:
(1)扩展知识面:学习数据治理的框架和最佳实践,包括数据质量管理、数据安全与隐私、数据标准化、数据生命周期管理等领域。有许多在线课程和认证可以帮助你在这些领域获得知识和技能。
(2)理解业务需求:数据治理的一个重要方面是确保数据管理活动支持组织的业务目标。深入理解你的组织业务需求和目标,可以帮助你更好地定位数据治理活动的优先级和方向。
(3)参与或建立跨职能团队:数据治理是一个跨职能的活动,涉及业务用户、IT专业人员、数据科学家等多个角色。试图参与或建立跨职能团队,可以帮助你获得从数据治理各个方面的经验。
(4)发展沟通和影响力技能:作为数据治理专业人员,需要与组织内的不同利益相关者沟通和协作,以推动数据治理政策和标准的制定和执行。因此,强大的沟通和影响力技能是必不可少的。
(5)实践项目经验:如果可能,参与或主导一些数据治理项目,如数据清洗、数据分类、数据标准化等项目。实际操作经验将是你学习和成长的宝贵财富。
从你当前的工作角度出发,你已经具备了数据治理所需的一些基础技能和经验。通过进一步学习和实践,你可以逐步将自己的职业生涯定位于数据治理领域,成为这一领域的专家。数据治理是一个不断发展的领域,随着数据的重要性日益增加,数据治理专业人员的需求也会持续增长。
9、很多公司开始的时候数据质量一般甚至致命,经过数据治理有了改善,但公司业务部门会认为这是理所当然要做到的,你以前没做到是你无能,请问如何应对这种观点?那些对业务有影响但不致命,又很耗精力的数据治理工作,到底做还是不做?
面对公司业务部门可能认为数据治理工作的成果是理所当然,甚至之前未能达到高质量数据是无能的观点,可以采取以下策略来应对,并决定是否继续投入资源进行那些对业务有影响但不致命、又很耗精力的数据治理工作:
(1)强化数据治理的价值宣传
(2)明确数据治理与业务目标的对齐
(3)建立量化的成果指标
(4)权衡成本与效益
(5)采用敏捷方法
通过上述策略,可以有效地应对业务部门可能有的观点,同时合理决定哪些数据治理工作应当优先执行。重要的是要不断沟通和展示数据治理工作的价值,使其成为推动业务发展不可或缺的一部分。
10、大量的数据治理工作都是碎片化的,比如源端数据提供延时,源数据格式有些问题,不需要升级,不需要跨部门,不需要制定政策和标准,对于这类小的数据治理工作,不足以展示其具体的业务价值,但又是耗精力的,如何应对这种工作?
面对碎片化的数据治理工作,尤其是那些似乎难以直接展示具体业务价值、但又耗费精力的任务,采取合理的方法和策略至关重要,以确保这些工作能够有效地支持数据治理的总体目标,同时优化资源的使用。以下是一些建议:
(1)优先级评估与分类
(2)整合与自动化
(3)制定操作指南
(4)小组协作
(5)成效跟踪与展示
(6)培养文化
通过上述策略,可以有效地应对和管理碎片化的数据治理工作,不仅提高工作效率,还能在长期中展示这些工作对提升数据质量和支持业务决策的重要价值。






欢迎光临 永洪社区 (https://club.yonghongtech.com/) Powered by Discuz! X3.4