本帖最后由 yhdata_oioQClG8 于 2024-3-1 18:58 编辑
通常来讲,数据规划可能包括两个层面的规划,一个是表层面的规划,一个是字段层面的规划。那么对于元数据,我们可以规划些什么?数据规划是否可行呢?这篇文章里,作者谈了谈他的看法,一起来看一下。
元数据是大数据平台的一个基础,大数据平台是以元数据为中心进行构建的。一个大数据平台能够把元数据管理好,那么这个平台就成功了一半。那么对于元数据我们能够规划些什么,是否可行? 一、数据规划的时候都规划什么数据的规划都规划些什么,具体来分的话大概包括两个层面的规划,一个是表层面的,一个是字段层面的。 二、表层面的规划表层面的规划涉及到数据仓库设计了。会包括了数据仓库分层、业务线划分。 1. 数据仓库分层对于数据仓库的分层也就是我们在数据仓库领域中常常听到的ODS、DWD、DWS等等层级了。 在一般建表过程中,只需要在表名称之前增加前缀来区分不同层级即可。但是在大数据平台上,我们还希望增加一个类似分层的标签,来区分表分别属于什么层级。 如果使用的是向导式的建表过程,可以直接在建表过程中,增加数仓分层的选择,这样在建表过程中就确定表所属数仓分层。如果是脚本式建的表,就需要表创建完成之后,再进行一次维护,因为在脚本式的文本编辑框中,是没有办法标记,表属于什么分层的。 当然,除非表的分层和底层存储的数据库具有逻辑关系,即不同的数据仓库分层,即是不同的数据库(好像大部分实际情况也是这个样子的)。 2. 业务分层一张表除了需要确定是什么数据仓库分层的,还需要确定是什么业务域的。一个数据仓库一般是汇总多个业务线数据,这些业务线中有的业务域重叠,有的是独有的。这就需要按照实际的业务情况进行划分。如果说数据仓库的分层是一个技术问题,业务域的划分就是一个业务+技术的问题了。需要对业务足够熟悉,又能知道把这些业务怎么进行技术表达,做到不重不漏。 在表上进行业务域的打标签,和进行数仓分层基本类型,如果向导式的可以直接在创建过程中进行打标。如果是脚本式,则需要再维护一次了。 三、表层面的规划,可行吗回到上面的问题,数据规划可行吗?个人认为在表层面的规划是可行的,也是有必要的。有了这些数仓分层、业务域划分,就能够很好的找到数据,或者后续对不同的层进行治理,审视。 个人感觉在大数据领域更多的是一个经验领域,每个人都有自己的认识,各种名词也都不能完全统一,各种理解也会有各自的角度,这里更多的是从自己的实际工作理解出发,后续可能随着工作接触不同层面,理解也会变化。 四、字段层面的规划 另一个层面的规划,字段层面的规划,这个层面的规划是否能够可行呢?又有哪些可以在字段层面进行规划呢? 数据指标 数据指标的使用,首选需要数据指标的统一。 数据指标的统一,在有一个系统支持之前,一般使用一张excel表进行管理,使用一个表格统一需要的指标口径,这种情况下可能小范围统一是可行的,如一个项目组,以为一个项目组内的信息拉齐很简单。如果要更大范围,变成全公司、全集团级别的指标对齐,就不能单单依赖Excel了。而是有一套系统,有指标的创建、审核、发布、下线等流程。 有了统一的数据指标,但是最终可以在两种场景下使用。一种是建模场景下的数据指标,一种是OLAP场景下的数据指标。这里的数据字段级别的规划,主要是在建模场景下的数据指标规划。 |