水果机
设为首页
收藏本站
首页
问答
文档
学院
专栏
工单
模板
活动
商城
YVP
永洪云
个人版下载
登录
/
注册
找文章 / 找答案
水果机
方格抽奖
永洪社区
›
社区公告
›
用户流失怎么办?三步教你搭建用户流失分析与预警模型 ...
永洪数据科学院
关注Ta
发帖数
199
粉丝
6
此人很懒,什么也没有留下
就是喜欢宣传
积极宣传本站,为本站带来更多的用户访问量
test
666
大赛作品分享
大赛冠军之作投稿分享-分公司竞争力价值模型 ...
社区焕新,由你主宰——永洪社区整改方案征集活动... ...
作者更多精彩帖子
热门问答
更多热门问答
0
为啥出现透视错误
28人围观,发布于2025-01-10
2
分享链接
90人围观,发布于2025-01-08
2
通过SSL加密链接MYSQL时,数据源如何连接?
62人围观,发布于2025-01-10
10
管理系统-数据量参数配置过滤组件和参数组
658人围观,发布于2024-09-13
6
报告展示时会显示执行sql语句
98人围观,发布于2025-01-10
96
2024年永洪满意度调查问卷
2196人围观,发布于2024-12-24
3
预警中怎么设置时间条件
51人围观,发布于2025-01-10
3
BI中怎么实现分组累加求和
69人围观,发布于2025-01-10
5
报告以邮件形式输出放在正文
2082人围观,发布于2024-05-16
8
list.qry.maxrow超过1万有什么影响
229人围观,发布于2024-12-03
精选问答
更多内容
转发赢积分,解锁众多智能豪礼!
永洪科技2024年全国数据分析大赛震撼启航! 【超级大奖等你来拿!】 想象一下,手握华
2024永洪科技全国数据分析大赛报名倒计时
更多赛事信息,点击大赛官网查看官方赛题数据,立即下载 官方赛题数据,立即下载更多
已参加人数 393
模板上传,知识共享,发布模板/素材也能赚
模版市场来帮你增加额外收入啦!! 轻松上传您制作的各类模板或精美素材,并设置适当
返回列表
用户流失怎么办?三步教你搭建用户流失分析与预警模型
永洪数据科学院
显示全部楼层
发表于 2021-6-8 16:33:49
|
阅读模式
在做用户运营的时候,除了要了解用户,为用户建立画像外,另一个重要的方向就是用户流失分析,对可能流失的用户进行分析、预警,及时采取措施进行用户挽留,最大可能的减少企业的损失。
通常情况下,企业挽留一个老用户相比于拉动一个新用户,在增加营业收入、产品周期维护方面都是有好处的。众多实践证明,提升用户留存率,减少用户流失,对于任何一家企业来说都是非常重要的。随着互联网的高速发展,对于企业来说,用户留存也逐渐成为了反映企业及产品核心竞争力的关键要素。
如何进行用户流失分析与预警?主要包括识别流失用户、定位流失原因、预警即将流失的用户,最终提供用户流失名单给运营人员做重点运营。
一
、定义流失用户
不同的产品对用户流失有着不同的定义,一般情况下,用户流失其实指的是在一段时间内不再使用产品的用户,可以通过回流率来判断,即:回流用户数/流失用户数*100%。在分析时,需先找出可以定义用户的核心行为,例如用户多久没有浏览网页算流失;用户多久不使用产品算流失。在根据回流率采用拐点理论来确定流失周期,如下图可以看出第4周后回流率下降速度减慢,后期回流率趋于平缓,因此将第4周定义为流失周期,这样就可以通过流失周期将用户划分为流失与非流失用户。
二
、流
失原因分析
流失原因分析可从两个方面着手,一方面可利用构建的用户流失预测模型,定量的探索找出影响用户流失的主要原因,从而针对性的进行用户挽回。另一方面考虑到数据分析的局限性,采用用户调研问卷、竞品调研、客户反馈评价等定性的分析用户流失的原因。两者相结合,可帮助运营人员深入了解流失原因,为后续预防用户流失制定运营策略。
三
、构建流失预警模型
在建立模型时,我们需要从历史数据中获取到一定时间内的用户基础数据(性别、年龄、地域、会员类型、用户来源等)、用户行为数据(登录天数、在线时长、登录频次等)以及用户消费数据(最近一单距今天数、累计单量、累计消费金额、客单价等),同时需要将用户按是否为流失用户贴标签。在数据预处理后可采用机器学习的方法建立模型,由于是二分类问题,同时需要用户的流失规则及各特征指标的重要性排序,因此可以选择随机森林、决策树、逻辑回归等算法。最后通过模型评价指标例如正确率、召回率、精确度等,筛选出最优模型进行模型部署,对未来用户流失做预警。
接下来举一个电信的实例,众所周知,客户在电信运营商户群中的地位十分重要,如何有效地保留现有客户、开发潜在客户、回流已流失客户是电信运营商市场竞争中的三个重要环节,因此对电信客户流失进行预测尤为重要。
已知从运营商获取数据:
1、用户基础数据,包括性别、年龄、职业、教育程度、所在地区等;
2、用户的行为数据,包括入网时间、投诉次数、通话时长、基本月租、话费额等。
首先需要先定义流失用户,确定哪些用户的核心行为可以代表流失,是连续欠费不交还是号码长期不用?定义完核心行为后,就可以根据公式计算回流率,利用拐点理论找出流失周期,
从而为用户贴标签。贴完标签后利用Yonghong Z-Suite中的深度分析模块建立的用户流失预警模型界面如下:
以上采用的是逻辑回归的算法进行建模,模型需要选择自变量包括性别、年龄、职业、入网时间等,因变量表示是否流失,确定好训练集和验证集的比例后便可以运行模型,训练集用于训练模型,验证集用于验证模型以便输出最优模型,模型运行完输出的结果包括模型系数,还有训练集、验证集的正确率、召回率、精确度等,如下图:
建立完模型后可通过产品自带的调度任务,利用模型应用,定期自动执行实验,对未来的用户预测,并将模型预测结果存入到数据集中,方便数据分析人员分析及运营人员采取相应的挽留措施。
在进行完用户流失分析与预警后,我们拿到了流失名单,可通过聚类、RFM模型等将用户分群,如下图给出各类客户流失率的占比,也可以进一步细分客户按性别、年龄等分析用户的流失率,实现对不同的用户采用不同的召回策略。
总之,在日益严峻的竞争环境下,企业及时的预警和防范用户流失将变得尤为重要,这就要求运营不仅需要有数据思维和对前沿数据技术的了解,还需挖掘数据深层的价值,以用户为中心,深入理解用户需求,增加用户体验,用体验促进转化。
回复
使用道具
举报
选择颜文字
|∀゚
(´゚Д゚`)
(;´Д`)
(`・ω・)
(=゚ω゚)=
| ω・´)
゚(つд`゚)
|д゚ )
(σ゚∀゚)σ
(σ゚д゚)σ
(ノ゚∀゚)ノ
ヾ(´ε`ヾ)
(。◕∀◕。)
( ^ω^)
(o゚ω゚o)
( ゚ω゚)
( ´ρ`)
( ´_っ`)
( `ー´)
( `_っ´)
(`・ω・´)
(´・ω・`)
(`・ω)
( ´・ω)
(・ω・)
(*´ω`*)
ヾ(´ω゚`)
( ̄︶ ̄)
( ̄︿ ̄)
( ̄ .  ̄)
( ̄3 ̄)
( ̄∇ ̄)
( TдT)
・゚( ノд`゚)
( ` ・´)
((( ゚д゚)))
( ☉д⊙)
( ;゚д゚)
Σ( ゚д゚)
( ゚д゚)
(|||゚д゚)
(╬゚д゚)
゚ ∀゚)ノ
゚∀゚)σ
σ`∀´)
(`ヮ´ )
(`ε´ )
( `д´)
(*゚∀゚*)
(〃∀〃)
(ゝ∀・)
(・∀・)
(*´д`)
( ´_ゝ`)
( ゚ 3゚)
(*゚ー゚)
(*゚∇゚)
(*´∀`)
( ゚∀゚)
(|||゚Д゚)
(゚Д゚≡゚Д゚)
(つд⊂)
|∀` )
|д` )
高级模式
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
登录
|
免费注册
发表回复
回帖并转播
回帖后跳转到最后一页
就是喜欢宣传
积极宣传本站,为本站带来更多的用户访问量
test
666
返回顶部