找文章 / 找答案
精选问答 更多内容

科学预测你需要掌握这4点

寻找新技能 显示全部楼层 发表于 2021-4-14 09:46:34 |阅读模式 打印 上一主题 下一主题
怎样用科学方法进行预测呢?

我们可以基于数据和分析,利用业务知识对未来进行预测。随着计算机技术和网络技术的发展,大数据技术深入到各行各业。从海量数据中挖掘具有潜在价值的关系、趋势和模式,构建预测模型、做出预测分析是必然趋势。通过数据实现预测可以帮助企业发现市场机会,做出科学的经营决策。
企业微信截图_16183646386863.png

科学的预测离不开数据,数据离不开预测方法,目前的预测方法大致分为如下类:

  • 定性预测法


主要依赖于人的主观判断。当可供参考的历史数据很少时,采用定性预测方法最合适。
  • 时间序列预测法


运用历史数据对未来进行预测,它尤其适用于每年基本模式变化不大的场景。

  • 因果关系预测法


假定需求预测与某些因素相关,因果关系预测法可以找到这些因素与需求的关联性,通过预测这些外界因素的变化来预测未来。
  • 仿真法


模拟模型允许预测人员对预测的条件作一定程度的假设。
科学的预测需经历确定需求—获取数据—分析数据—建立模型—预测未来—支持决策。

先要确定预测的对象、目标和范围,这里的范围包括地理范围和时间范围。收集所需的数据,对数据进行预处理,同时分析数据的周期性、季节性、趋势性和随机性。选择预测方法建立模型,同时要确认模型对预测是否有效。根据前面的数据信息和预测模型对预测对象做出合理的预测。通过预测结果,可为即将到来的事物制定决策,以完成预测的目标。

接下来举一个简单的例子,假如要求你对公司某款产品未来几个月销售量等进行预测,且这些被预测变量具有增长趋势,公司可能会根据你的预测结果,进行战略调整和布局,那么如何进行预测呢?可以使用时间序列预测。

示例数据如下:

企业微信截图_16183646282886.png

对销售数据进行探索分析,商品每月销售量的分布图:
企业微信截图_1618364622325.png

商品在各省销售量的分布图:
企业微信截图_16183646125228.png

商品型号在各省销售量的分布图:
企业微信截图_16183645934242.png

利用Python获得数据的基本信息如下:

企业微信截图_1618364574701.png

从上面可知数据量为218618条,没有缺失值,因此不需要进行缺失值处理。接下来,需要统计每月产品的销售量,然后选择时间序列的方法进行预测,在进行时间序列分析前需分析数据的稳定性,将不稳定的数据利用差分的方法进行稳定处理,同时将数据分解,以分析数据的周期性、季节性、趋势性和随机性,具体细节这里不再赘述。本文选择的是基于python 的SARIMAX的方法。SARIMAX是以差分整合移动平均自回归模型(ARIMA)为基础在添加Seasonal季节性、周期性和eXogenous外部因素。生成的模型概况如下:

企业微信截图_16183645552537.png
利用模型预测未来几个月的结果图如下:
企业微信截图_1618364530842.png

结束语在当前的数字经济时代,自以为是必定失败。利用数据结合业务知识,使用经过验证的分析,而不是靠纯粹的直觉判断。运用科学的方法,分析和预见其发展趋势,掌握市场变化的规律,提高管理的科学水平,减少决策的盲目性,减少未来的不确定性,降低决策可能遇到的风险,由此决策目标才能得以顺利实现。
回复

使用道具 举报

高级模式
您需要登录后才可以回帖 登录 | 免费注册

  • 官方微信

    欢迎关注永洪服务号!收费为0,价值无限

    扫码关注
  • 新浪微博

    让每位用户轻松挖掘数据价值!

    访问新浪微博
  • 智能客服
50W

会员等你来哦

Copyright   ©2012-2024  北京永洪商智科技有限公司  (京ICP备12050607) 京公网安备110110802011451号 |《永洪社区协议》
返回顶部